We have y=xsqrt(1-x^3)y=x√1−x3
We will differentiate both sides with respect to xx using the chain rule and the product rule.
The product rule is d/dx(U*V)=color(blue)Ud/dxcolor(red)V+color(blue)Vd/dxcolor(red)Uddx(U⋅V)=UddxV+VddxU
d/dxy=d/dx(xsqrt(1-x^3))ddxy=ddx(x√1−x3)
dy/dx=color(blue)sqrt(1-x^3)d/dxcolor(red)x+color(blue)xd/dxcolor(red)sqrt(1-x^3)d/dxcolor(green)(1-x^3)dydx=√1−x3ddxx+xddx√1−x3ddx1−x3
dy/dx=color(blue)sqrt(1-x^3)*color(red)1+color(blue)xcolor(red)(1/(2sqrt(1-x^3))*color(green)((-3x^2))dydx=√1−x3⋅1+x12√1−x3⋅(−3x2)
dy/dx=sqrt(1-x^3)-(x3x^2)/(2sqrt(1-x^3))dydx=√1−x3−x3x22√1−x3
dy/dx=sqrt(1-x^3)-(3x^3)/(2sqrt(1-x^3))dydx=√1−x3−3x32√1−x3