13x + 13y = 1613x+13y=16.....(I)(I)
3x + 19y = 193x+19y=19.....(II)(II)
Rearranging (II)(II) for x for simplicity,
3x = 19 - 19y3x=19−19y
implies⇒x = (19-19y)/3x=19−19y3
Substituting for xx in (I)(I)
13( (19-19y)/3) + 13y = 1613(19−19y3)+13y=16
implies⇒(247 - 247y)/3 + 13y = 16247−247y3+13y=16
implies⇒(247-247y+39y)/3 = 16247−247y+39y3=16
implies⇒247-208y = 16*3247−208y=16⋅3
implies⇒208y = 247 - 48208y=247−48
implies⇒y = 199/208y=199208
Substituting for yy in either equation (we'll choose (II)(II)),
3x + 19(199/208) = 193x+19(199208)=19
implies⇒3x = 19 - 3781/2083x=19−3781208
implies⇒x = 1/3*((3952 - 3781)/208) = 1/3 * (171/208) = 171/624 = 57/208x=13⋅(3952−3781208)=13⋅(171208)=171624=57208