Question #27399

3 Answers
Oct 22, 2017

#x = 0# and #x = ln(5)#

Explanation:

Given two equations:

#y=3-e^x" [1]"#
#y=5(e^-x )-3" [2]"#

At the point of intersection #y = y#, therefore, we can set the right side of equation [2] equal to the right side of equation [1]:

#5(e^-x )-3=3-e^x#

Add 3 to both sides of the equation:

#5(e^-x )=6-e^x#

Multiply both sides of the equation by #e^-x#

#5(e^-x )^2=6(e^-x)-1#

If we let #u = e^-x# we can recognize a quadratic equation:

#5u^2=6u-1#

Write the quadratic so that it is equal to 0:

#5u^2-6u+1 = 0#

Factor:

#(u-1)(5u-1) = 0 #

#u = 1# and #u = 1/5#

reverse the substitution

#e^-x = 1# and #e^-x = 1/5#

Use the natural logarithm on both sides of both equations:

#-x = ln(1)# and #-x = ln(1/5)#

#x = 0# and #x = ln(5)#

Check #x = 0#:

#y=3-e^0#
#y=5(e^-0 )-3#

#y=3-1#
#y=5(1 )-3#

#y=2#
#y=2#

check #x = ln(5)#:

#y=3-e^(ln(5))#
#y=5(e^-ln(5) )-3#

#y=3-5#
#y=5(1/5 )-3#

#y = -2#
#y = -2#

Both check.

Oct 22, 2017

#(0,2), and, (ln5,-2).#

Explanation:

To find the point/s of intersection the curves

# C_1 : y=3-e^x, and, C_2 : y=5e^-x-3,# we need to solve their eqns.

#:. 3-e^x=y=5e^-x-3.#

#:. 3-e^x-5/e^x-3.# Let, #e^x=t.#

#:. 3-t=5/t-3 rArr 3t-t^2=5-3t, or, t^2-6t+5=0.#

#:. (t-5)(t-1)=0.#

#:. t=5, or, t=1.#

# t=5 rArr e^x=5 rArr x=ln5. Also, y=3-e^x=3-5=-2.#

#:. (x,y)=(ln5,-2).#

Similarly,

#t=1 rArr e^x=1 rArr x=0, and, y=3-e^x=3-1=2.#

#:. (x,y)=(0,2).#

Thus, #C_1 nn C_2={(0,2), (ln5,-2)}.#

Enjoy Maths.!

Oct 22, 2017

The intersection points will be ( #ln5#, -2) and (0,2).

Explanation:

This is the explanation for this:

Firstly we equalise both of the equations to find the common x value(s).

#5*(e^-x)-3=3-e^x#
#5*(e^-x)+e^x-3-3=0#
#5*1/(e^x)+e^x-6=0#
#5/e^x+e^x-6=0#
#cancel(e^x)*5/cancel(e^x)+e^x*e^x-6*e^x=0#
#5+e^(2x)-6*e^x=0#
#e^(2x)-6*e^x+5=0#
#(e^x-5)*(e^x-1)=0#

We equalise each bracket with 0.
#e^x-5=0#
#e^x=5#
#lne^x=ln5#
#xlne=ln5#
#x*1=ln5#
#x=ln5# (first x value)

#e^x-1=0#
#e^x=1#
#lne^x=ln1#
#x*lne=0#
#x*1=0#
#x=0# (second x value)

Then we need to find y-values for each corresponding x value by substituting x value in one of the main equations.
e.g let's substitute each value of x in #y=3-e^x#

#f(ln5)=3-e^ln5#
#f(ln5)=3-cancele^cancel(ln)5#
#f(ln5)=3-5#
#f(ln5)=-2#

first intersection point is #(ln5,-2)#.

Let's substitute the other x-value:

#f(0)=3-e^0#
#f(0)=3-1#
#f(0)=2#

second intersection point is #(0,2)#