Question #7d059

1 Answer
Oct 26, 2017

dy/dx=sint/(1-cost)dydx=sint1cost

Explanation:

We have the functions

x=t-sintx=tsint and y=1-costy=1cost

If we find out dy/dtdydt and dx/dtdxdt we can divide them and find dy/dxdydx

(dy/dt)/(dx/dt)dydtdxdt -> (dy/canceldt)/(dx/canceldt) -> dy/dx

color(red)1. y=1-cost

Differentiate both sides with respect to t

d/dty=d/dt(1-cost)

dy/dt=0-(-sint)

dy/dt=sint -> color(red)A

color(red)2. x=t-sint

Differentiate both sides with respect to t

d/dtx=d/dt(t-sint)

dx/dt=1-cost -> color(red)B

Now we divide color(red)A and color(red)B

(dy/dt)/(dx/dt)=sint/(1-cost)

dy/dx=sint/(1-cost)