Question #f46bb

1 Answer
Oct 27, 2017

#sec beta=-(3sqrt5)/5#

Explanation:

Using standard identities, #sec beta=1/cos beta=+-1/sqrt(1-sin^2 beta)#
Substituting in #sin beta=-sqrt(2/3)#
#sin^2 beta=4/9#
#1-sin^2 beta=5/9#
#+-sqrt(1-sin^2 beta)=+-sqrt5/3=cos beta#
Since #beta# is in the third quadrant, both #sin beta# and #cos beta# are negative, we need #cos beta=-sqrt5/3#
So #sec beta=1/cos beta=1/(-sqrt5/3)=-3/sqrt5#,
which might also be written, with a rational denominator, as:
#sec beta=-(3sqrt5)/5#