Solve (x-2)^3 = x^3 - 2(x2)3=x32?

1 Answer
Oct 31, 2017

1

Explanation:

Given,(x-2)^3=x^3-2(x2)3=x32
rArr x^3-3x^2. 2+3x.2^2-2^3=x^3-2x33x2.2+3x.2223=x32
rArr x^3-x^3-6x^2+12x-8+2=0x3x36x2+12x8+2=0
rArr -6x^2+12x-6=06x2+12x6=0
rArr -6(x^2-2x+1)=06(x22x+1)=0
rArr x^2-2x+1=0 x22x+1=0[divide both sides by -6]
rArr (x-1)^ 2 = 0(x1)2=0
rArr x-1 = 0x1=0[squaring both sides]
rArr x = 1x=1