If #h( x ) = - 3x - 3#, what is #h(3x)#?

2 Answers
Nov 2, 2017

# h(3x) = -9x - 3 #

Explanation:

Since # h(x) # changes to # h(3x) #, you have to change all the # x # values in the equation to # 3x #.

# h(3x) = -3(3x)-3 #
# h(3x) = -9x - 3 #

So the answer is

# h(3x) = -9x - 3 #

Nov 2, 2017

#h(3x)=-9x-3#

Explanation:

When we evaluate the function #h# at the value #3x#, we replace all of the instances of #x# in the original expression with #3x#. Doing that, we get:

#h(x)=-3(3x)-3#
#h(x)=-9x-3#