Given a right triangle #triangle ABC# with #C=90^circ#, if a=2, c=6, how do you find b?

3 Answers
Nov 5, 2017

#b= 4sqrt(2)#

Explanation:

enter image source here

Using the Pythagorean Theorem,
#a^2 + b^2 = c^2#
#b = sqrt(c^2 - a^2)#
#b = sqrt(6^2 - 2^2)#
#b= 4sqrt(2)#

Nov 5, 2017

The side #b# is # 4sqrt2# unit.

Explanation:

in right triangle #Delta ABC , /_C=90^0 , a=2 , c=6 ; c # is

the side opposite to the right angle, so it is hypotenuse,

#a and b # are the adjacent sides of the right angle .

We know in right triangle #Delta ABC, a^2+b^2=c^2#

#:. 2^2+b^2=6^2 or b^2= 36-4 =32 :. b =sqrt32 or b=4sqrt2#

unit. The side #b# is # 4sqrt2# unit [Ans]

Nov 5, 2017

#4sqrt2#

Explanation:

Consider the diagram

paint

Since this is a right triangle,

We can find the length #b# by using the Pythagoras theorem

#color(blue)(a^2+b^2=c^2#

Plugin the values

#rarr2^2+b^2=6^2#

#rarr4+b^2=36#

#rarrb^2=32#

Take the square root of both sides

#rarrsqrt(b^2)=sqrt(32)#

#rarrb=sqrt(16*2)#

#color(green)(rArrb=4sqrt2#

Hope that helps!!! ☺♣☻