Question #e058f

1 Answer
Nov 9, 2017

Use that dang ol' chain rule...

Explanation:

...but you have to apply it more than once...

d/dx(cos^2(pi * x))ddx(cos2(πx))

= 2cos(pi*x) * d/dx(cos(pi*x))=2cos(πx)ddx(cos(πx))

= 2cos(pi*x) * (-sin(pi*x) * d/dx(pi*x))=2cos(πx)(sin(πx)ddx(πx))

= 2cos(pi*x) * pi(-sin(pi*x))=2cos(πx)π(sin(πx))

=-2pi(cos(pi*x) * sin(pi*x))=2π(cos(πx)sin(πx))

(Wolfram reminds me that you can use the double angle identity - 2cos(a)sin(a) = sin(2a)2cos(a)sin(a)=sin(2a), so you can rewrite the above as:

-pi(sin(2pi*x))π(sin(2πx))

GOOD LUCK