How do you simplify #\root[ 3] { \frac { 25x ^ { 11} } { 9w ^ { 2} } }#?

1 Answer
Nov 11, 2017

rationalize denominator
#(5x^3 root(3)(x^2w))/(3w)#

Explanation:

#root(3)(25x^11)/root(3)(9w^2)#

we need to rationalize the denominator first.

What we are looking for are factors that are multiples of the index, or perfect cubes.

#root(3)(25x^11)/root(3)(9w^2)#

#9 * 3 = 27# meaning #3^3# is 27

#w^2 *w = w^3# giving us another perfect cube rationalizing the denominator

#root(3)(25x^11)/root(3)(9w^2)*root(3)(3w)/root(3)(3w) = (root(3)125 root(3)(w)root(3)(x^11))/(root(3)(27w^3)#

In the numerator:

#root(3)125 = 5 # Is a perfect cube

#root(3)w# is fully simplified

#root(3)x^9# #* root(3)x^2 = root(3)x^11#

#x^(9/3)# = # x^3#

#root(3)27# #root(3) w^3# This is the denominator

#root(3)27 = 3 #
#root(3)w^3 = w#

put it all back together over a single fraction

#(5x^3 root(3)(x^2)root(3)w)/(3w)#