How do you simplify \root[ 3] { \frac { 25x ^ { 11} } { 9w ^ { 2} } }325x119w2?

1 Answer
Nov 11, 2017

rationalize denominator
(5x^3 root(3)(x^2w))/(3w)5x33x2w3w

Explanation:

root(3)(25x^11)/root(3)(9w^2)325x1139w2

we need to rationalize the denominator first.

What we are looking for are factors that are multiples of the index, or perfect cubes.

root(3)(25x^11)/root(3)(9w^2)325x1139w2

9 * 3 = 2793=27 meaning 3^333 is 27

w^2 *w = w^3w2w=w3 giving us another perfect cube rationalizing the denominator

root(3)(25x^11)/root(3)(9w^2)*root(3)(3w)/root(3)(3w) = (root(3)125 root(3)(w)root(3)(x^11))/(root(3)(27w^3)325x1139w233w33w=31253w3x11327w3

In the numerator:

root(3)125 = 5 3125=5 Is a perfect cube

root(3)w3w is fully simplified

root(3)x^93x9 * root(3)x^2 = root(3)x^113x2=3x11

x^(9/3)x93 = x^3x3

root(3)27327 root(3) w^33w3 This is the denominator

root(3)27 = 3 327=3
root(3)w^3 = w3w3=w

put it all back together over a single fraction

(5x^3 root(3)(x^2)root(3)w)/(3w)5x33x23w3w