How is the answer -2/3 and -4/3? I do not understand how this can be.

enter image source here

2 Answers
Nov 11, 2017

Read the full explanation below :)

Explanation:

First, set your equation equal to zero.

#9x^2+18x=(-8)# Add 8 to both sides. #darr#
#9x^2+18x+8=0#

Now, we simply use the quadratic formula.

#x_(1, 2)=(-b+-sqrt(color(blue)(b^2-4ac)))/(2a)#

First, solve for your discriminant, the portion marked in blue. Recall that a quadratic is written as #ax^2+bx+c#, so take the numbers from our original question using that formula.

#(18)^2-4(9)(8) = 36#

Now, plug that into the quadratic formula.

#x_(1, 2)=(-b+-sqrt(36))/(2a)#

Plug in the rest of your numbers.

#x_(1, 2)=(-18+-sqrt(36))/(2(9))#

Simplify.

#x_(1, 2)=(-18+-6)/18#

Solve.

#x_1=(-18+6)/18#
#x_1=(-12)/18 = (-0.666...) or (-2/3)#

#x_2=(-18-6)/18#
#x_2=(-24)/18 = (-1.333...) or (-1 1/3) or (-4/3)#

Nov 11, 2017

#"see explanation"#

Explanation:

#"using the method of "color(blue)"completing the square"#

#y=9x^2+18x+8=0#

#• " the coefficient of the "x^2" term must be 1"#

#rArr9(x^2+2x+8/9)=0#

#• "add/subtract "(1/2"coefficient of x-term")^2" to "x^2+2x#

#rArr9(x^2+2(1)xcolor(red)(+1)color(red)(-1)+8/9)=0#

#rArr9(x+1)^2+9(-1+8/9)=0#

#rArr9(x+1)^2-1=0#

#rArr(x+1)^2=1/9#

#color(blue)"take the square root of both sides"#

#rArrx+1=+-sqrt(1/9)larrcolor(blue)"note plus or minus"#

#rArrx=-1+-1/3#

#rArrx=-1-1/3=-4/3" or "x=-1+1/3=-2/3#