Question #ea4c4

1 Answer
Nov 15, 2017

#f(t)=12arctg(t)-3Pi#

Explanation:

we know

#f'(t)=dy/dt#

#dy/dt=(12)/(1+t^2)#

transposing differentials

#dy=(12)/(1+t^2)dt#

integrating

#int(12)/(1+t^2)dt#

#t=tan(u)#
#dt=1/cos^2(u)du#

#int(12)/((cos^2(u)/(cos^2(u))+(sin^2(u))/(cos^2(u))))(1/cos^2(u)du)#

#cos^2(u)+sin^2(u)=1#

#int(12)/((1/(cos^2(u))))(1/cos^2(u)du)#

dividing

#int(12)du#

integrating

#int(12)du=12u+c#

but #arctg(t)=u#
then

#12u+c=12arctg(t)+c#

#f(t)=12arctg(t)+c# ... 1

now finding the constant 'c' #f(1)=0#

in (1)

#f(1)=12arctg(1)+c#

#0=12arctg(1)+c#

#arctg(1)=Pi/4#

#0=12Pi/4+c#

#0=3Pi+c#

#-3Pi=c#

now

#f(t)=12arctg(t)-3Pi#