Question #db777

2 Answers
Nov 15, 2017

#-1/5sin^5(x)+c#

Explanation:

we take

#intsec^5(x)/tan^6(x)dx#

we know

#sec^5(x)=1/(cos^5(x)#

#tan^6(x)=sin^6(x)/cos^6(x)#

replacing identities

#int(1/(cos^5(x)))/(sin^6(x)/cos^6(x))dx#

multiplying and simplifying terms

#intcos(x)/sin^6(x)dx#

substitute #u=sin(x) -> du=cos(x)dx -> dx=1/cos(x)du#

#intcos(x)/u^6(1/cos(x)du)#

dividing

#int1/u^6du#

integrating

#int1/u^6du=-1/(5u^5)+c#

but #u=sinx#

#int1/u^6du=-1/(5u^5)+c=-1/(5sin^5(x))+c#

#intsec^5(x)/tan^6(x)dx=-1/(5sin^5(x))+c#
or

#intsec^5(x)/tan^6(x)dx=-1/5 csc^5(x)+c#

Nov 15, 2017

#int (secx)^5/(tanx)^6*dx=-(cscx)^5/5+C#

Explanation:

#int (secx)^5/(tanx)^6*dx#

=#int (cotx)^6/(cosx)^5*dx#

=#int cotx*(cscx)^5*dx#

=#int (cscx)^4*(cscx*cotx*dx)#

After using #u=cscx# and #du=-cscx*cotx*dx# transforms,

#int -u^4*du#

=#-1/5*u^5+C#

=#-(cscx)^5/5+C#