Question #db777

2 Answers
Nov 15, 2017

15sin5(x)+c

Explanation:

we take

sec5(x)tan6(x)dx

we know

sec5(x)=1cos5(x)

tan6(x)=sin6(x)cos6(x)

replacing identities

1cos5(x)sin6(x)cos6(x)dx

multiplying and simplifying terms

cos(x)sin6(x)dx

substitute u=sin(x)du=cos(x)dxdx=1cos(x)du

cos(x)u6(1cos(x)du)

dividing

1u6du

integrating

1u6du=15u5+c

but u=sinx

1u6du=15u5+c=15sin5(x)+c

sec5(x)tan6(x)dx=15sin5(x)+c
or

sec5(x)tan6(x)dx=15csc5(x)+c

Nov 15, 2017

(secx)5(tanx)6dx=(cscx)55+C

Explanation:

(secx)5(tanx)6dx

=(cotx)6(cosx)5dx

=cotx(cscx)5dx

=(cscx)4(cscxcotxdx)

After using u=cscx and du=cscxcotxdx transforms,

u4du

=15u5+C

=(cscx)55+C