Question #54aa1

1 Answer
Nov 15, 2017

#(2e^(2x^2)(2x^2lnx-1))/(xln^3(x))#

Explanation:

for the quotient rule

#(e^(2x^2))/(Lnx)^2#

#d/dx((e^(2x^2))/(Lnx)^2)#

#d/dx((e^(2x^2))/(Lnx)^2)=(d/dx(e^(2x^2))(ln^2(x))-(e^(2x^2))d/dx(ln^2(x)))/(ln^2(x))^2#

#d/dx(e^(2x^2))=4x.e^(2x^2)#

#d/dx(ln^2(x))=2/xln(x)#

#d/dx((e^(2x^2))/(Lnx)^2)=((4x.e^(2x^2))(ln^2(x))-(e^(2x^2))2/xln(x))/(ln^2(x))^2#

multiplying everything for a x

#d/dx((e^(2x^2))/(Lnx)^2)=((4x^2.e^(2x^2))(ln^2(x))-(e^(2x^2))2ln(x))/(x(ln^2(x))^2#

factoring #e^(2x^2)(2ln(x))#

#d/dx((e^(2x^2))/(Lnx)^2)=(2e^(2x^2)ln(x)(2x^2lnx-1))/(xln^4(x))#

dividing

#d/dx((e^(2x^2))/(Lnx)^2)=(2e^(2x^2)(2x^2lnx-1))/(xln^3(x))#