for the quotient rule
(e^(2x^2))/(Lnx)^2e2x2(lnx)2
d/dx((e^(2x^2))/(Lnx)^2)ddx(e2x2(lnx)2)
d/dx((e^(2x^2))/(Lnx)^2)=(d/dx(e^(2x^2))(ln^2(x))-(e^(2x^2))d/dx(ln^2(x)))/(ln^2(x))^2ddx(e2x2(lnx)2)=ddx(e2x2)(ln2(x))−(e2x2)ddx(ln2(x))(ln2(x))2
d/dx(e^(2x^2))=4x.e^(2x^2)ddx(e2x2)=4x.e2x2
d/dx(ln^2(x))=2/xln(x)ddx(ln2(x))=2xln(x)
d/dx((e^(2x^2))/(Lnx)^2)=((4x.e^(2x^2))(ln^2(x))-(e^(2x^2))2/xln(x))/(ln^2(x))^2ddx(e2x2(lnx)2)=(4x.e2x2)(ln2(x))−(e2x2)2xln(x)(ln2(x))2
multiplying everything for a x
d/dx((e^(2x^2))/(Lnx)^2)=((4x^2.e^(2x^2))(ln^2(x))-(e^(2x^2))2ln(x))/(x(ln^2(x))^2ddx(e2x2(lnx)2)=(4x2.e2x2)(ln2(x))−(e2x2)2ln(x)x(ln2(x))2
factoring e^(2x^2)(2ln(x))e2x2(2ln(x))
d/dx((e^(2x^2))/(Lnx)^2)=(2e^(2x^2)ln(x)(2x^2lnx-1))/(xln^4(x))ddx(e2x2(lnx)2)=2e2x2ln(x)(2x2lnx−1)xln4(x)
dividing
d/dx((e^(2x^2))/(Lnx)^2)=(2e^(2x^2)(2x^2lnx-1))/(xln^3(x))ddx(e2x2(lnx)2)=2e2x2(2x2lnx−1)xln3(x)