Yes, you need to use sinxsinx and cosxcosx as constants:
acosx+bsinx=0acosx+bsinx=0
-asinx+bcosx=tanx−asinx+bcosx=tanx
One way to tackle this is to solve for something from the top equation and substitute it into the bottom one. Let's solve for aa:
acosx=-bsinxacosx=−bsinx
a=(-bsinx)/cosxa=−bsinxcosx
Now let's plug this into the bottom equation:
-((-bsinx)/cosx)sinx+bcosx=tanx−(−bsinxcosx)sinx+bcosx=tanx
btanxsinx+bcosx=tanxbtanxsinx+bcosx=tanx
Now let's factor the bb out:
b(tanxsinx+cosx)=tanxb(tanxsinx+cosx)=tanx
Now let's divide both sides by (tanxsinx+cosx)(tanxsinx+cosx)
(b(tanxsinx+cosx))/(tanxsinx+cosx)=tanx/(tanxsinx+cosx)b(tanxsinx+cosx)tanxsinx+cosx=tanxtanxsinx+cosx
b=tanx/(tanxsinx+cosx)b=tanxtanxsinx+cosx
Now let's see if we can simplify this. Let's plug in sinx/cosxsinxcosx for tanxtanx:
b=(sinx/cosx)/((sinx/cosx)sinx+cosx)b=sinxcosx(sinxcosx)sinx+cosx
b=(sinx/cosx)/((sin^2x/cosx)+cosx)b=sinxcosx(sin2xcosx)+cosx
Let's add the two terms together at the bottom by taking a common denominator:
b=(sinx/cosx)/((sin^x+cos^2x)/cosx)b=sinxcosxsinx+cos2xcosx
But we know:
sin^2x+cos^2x=1sin2x+cos2x=1
b=(sinx/cosx)/(1/cosx)b=sinxcosx1cosxor
b=(sinx/cosx)*(cosx/1)b=(sinxcosx)⋅(cosx1)
b=(sinx/cancelcosx)(cancel cosx/1)
b=sinx
Now let's plug it into the top equation to solve for a:
acosx+sinxsinx=0
acosx+sin^2x=0
acosx=-sin^2x
Now we divide bith sides by cosx to solve for a:
acosx/cosx=-sin^2x/cosx
acancelcosx/cancelcosx=-sin^2x/cosx
a=-sin^2x/cosx=-(sinxsinx)/cosx=-tanxsinx