Question #49555

1 Answer
Nov 18, 2017

Let x^2 = theta

Explanation:

intx^3cos(x^2)dx = int theta^(3/2)costheta (d theta)/(2theta^(1/2))

=int thetacostheta d theta

int udv = uv- int v du

u = theta, dv = cos theta d theta then v = sin theta

(1/2)int thetacostheta d theta = (1/2)(theta sintheta - int sintheta d theta)

=(1/2)(theta sin theta +cos theta+C)
=(1/2)(x^2 sin(x^2) + cos(x^2) + C)

Let us differentiate and check the result

If f = x^2 sin(x^2) + cos(x^2) + C

(df)/(dx) = \cancel(2xsin(x^2)) + x^2 cos(x^2) (2x)-\cancel(2xsin(x^2))

= 2x^3cos(x^2)

1/2 (df)/(dx) = x^3cos(x^2)

Hence the solution above is correct.