ax^2+bx+c=0ax2+bx+c=0
x_(1,2)=(-b+-sqrt(b^2-4*a*c))/(2*a)x1,2=−b±√b2−4⋅a⋅c2⋅a
15x^2-28x+5=015x2−28x+5=0
=>⇒
a=15a=15
b=-28b=−28
c=5c=5
=>⇒
x_(1,2)=(-(-28)+-sqrt((-28)^2-4*(15)*(5)))/(2*(15))=x1,2=−(−28)±√(−28)2−4⋅(15)⋅(5)2⋅(15)=
=(28+-sqrt(784-300))/(30)==28±√784−30030=
=(28+-sqrt(484))/(30)==28±√48430=
=(28+-22)/(30)==28±2230=
=>⇒
x_1=(28+22)/(30)=50/30=5/3=1 2/3~~1.667x1=28+2230=5030=53=123≈1.667
x_2=(28-22)/(30)=6/30=2/10=1/5=0.2x2=28−2230=630=210=15=0.2