Question #53487

1 Answer
Nov 21, 2017

f_((x)):x^3-4x^2-1=0f(x):x34x21=0

Explanation:

f_((x)):(2x)/(x-1)-(3x)/(x+1)=1/xf(x):2xx13xx+1=1x


x!=0,+-1x0,±1


=>
(2x*(x(x+1)(x-1)))/(x-1)-(3x*(x(x+1)(x-1)))/(x+1)=(1*(x(x+1)(x-1)))/x2x(x(x+1)(x1))x13x(x(x+1)(x1))x+1=1(x(x+1)(x1))x

=> 2x^2(x+1)-3x^2(x-1)=x^2-12x2(x+1)3x2(x1)=x21

=> 2x^3+2x^2-3x^3+3x^2=x^2-12x3+2x23x3+3x2=x21

=> -x^3+5x^2=x^2-1x3+5x2=x21

=> -x^3+4x^2+1=0x3+4x2+1=0

=> x^3-4x^2-1=0x34x21=0

=> x^2(x-4)=1x2(x4)=1

(=>(For x in RR => lim_(x rarr~ 4.0606)(x^3-4x^2-1)~~0)