f_((x)):(2x)/(x-1)-(3x)/(x+1)=1/xf(x):2xx−1−3xx+1=1x
x!=0,+-1x≠0,±1
=>⇒
(2x*(x(x+1)(x-1)))/(x-1)-(3x*(x(x+1)(x-1)))/(x+1)=(1*(x(x+1)(x-1)))/x2x⋅(x(x+1)(x−1))x−1−3x⋅(x(x+1)(x−1))x+1=1⋅(x(x+1)(x−1))x
=> 2x^2(x+1)-3x^2(x-1)=x^2-1⇒2x2(x+1)−3x2(x−1)=x2−1
=> 2x^3+2x^2-3x^3+3x^2=x^2-1⇒2x3+2x2−3x3+3x2=x2−1
=> -x^3+5x^2=x^2-1⇒−x3+5x2=x2−1
=> -x^3+4x^2+1=0⇒−x3+4x2+1=0
=> x^3-4x^2-1=0⇒x3−4x2−1=0
=> x^2(x-4)=1⇒x2(x−4)=1
(=>(⇒For x in RR => lim_(x rarr~ 4.0606)(x^3-4x^2-1)~~0)