Question #1506a

2 Answers
Nov 21, 2017

dydx=11+x2

Explanation:

You can simply use the chain rule:

ddxln(x+1+x2)=(1x+1+x2)ddx(x+1+x2)

ddxln(x+1+x2)=(1x+1+x2)(1+x1+x2)

ddxln(x+1+x2)=(1x+1+x2)x+1+x21+x2

ddxln(x+1+x2)=11+x2

or you can note that:

f(x)=ln(x+1+x2)

is the logarithmic form of the inverse hyperbolic sine function so that:

y=ln(x+1+x2)sinhy=x

differentiating the second expression implicitly:

ddx(sinhy)=1

coshydydx=1

dydx=1coshy

and from the identity:

cosh2ysinh2y=1

we then get:

coshy=1+sinh2y=1+x2

and:

dydx=11+x2

Nov 21, 2017

#