What are the asymptotes and removable discontinuities, if any, of f(x)= (3x)^2/(x^2-x-6)+3 f(x)=(3x)2x2x6+3?

1 Answer
Nov 22, 2017

vertical asymptotes are x=3x=3 and x=-2x=2
horizontal asymptote is y=12y=12

none removable discontinuities ("holes")

Explanation:

f_((x))={(3x)^2}/{x^2-x-6}+3=f(x)=(3x)2x2x6+3=

= {9x^2}/{(x-3)(x+2)}+3==9x2(x3)(x+2)+3=

= {9x^2+3x^2-3x-18}/{(x-3)(x+2)}==9x2+3x23x18(x3)(x+2)=

= {12x^2-3x-18}/{(x-3)(x+2)}==12x23x18(x3)(x+2)=

= 3{4x^2-x-6}/{(x-3)(x+2)}=34x2x6(x3)(x+2)

x_(u_(1,2))={3+-sqrt(9+4*12*18)}/24={3+-3sqrt(97)}/24={1+-sqrt(97)}/8xu1,2=3±9+4121824=3±39724=1±978

x_(u_(1,2))~~1.356 , -1.106 != 3,-2xu1,21.356,1.1063,2

=>

vertical asymptotes are x=3x=3 and x=-2x=2

lim_{x rarr +-oo}f_((x))=12

=>

horizontal asymptote is y=12