How do you find the vertex and the intercepts for #y=x^2-2x-3#?

1 Answer
Nov 23, 2017

#vertex ➝ (1,-4)#

#x-ax is ➝ (-1,0) ∪ (3,0)#
#y-ax is ➝ (0,-3)#

Explanation:

The vertex formula is:
#x_v=(-b)/(2a)#

so,
#x_v=(2)/(2*1)=1#

we substitute in the function equation,
#y_v=f(1)=1^2-2*1-3=-4#

so we get the point #(1,-4)#.
To know the x-axis interception points we equal the function to #0#.
#0=x^2-2x-3#

#x=(-b+-sqrt(b^2-4ac))/(2a)=(2+-sqrt((-2)^2-4*1*(-3)))/(2*1)#

#x_1=-1#
#x_2=3#

so we have the points #(-1,0)# and #(3,0)#.
If we substitute #x#by #0# in the function equation we get the interception point in the y-axis,
#f(0)=0^2-2*0-3=-3#

we get the point #(0,-3)#.