Question #d6918

1 Answer
Nov 25, 2017

e4(12xcos(2x)+14sin(2x))+C

Explanation:

e(e3xsin(2x)dx)=e4xsin(2x)dx

e4 is a constant and can be pulled out:

=e4xsin(2x)dx

Let's use integration by parts since we have a product of two functions:

u=x and dv=sin(2x)dx. Then:

du=dx and v=12cos(2x)

udv=uvvdu

xsin(2x)dx=12xcos(2x)12cos(2x)dx=12xcos(2x)+12cos(2x)dx

=12xcos(2x)+1212sin(2x)+C

Now we need to make sure we do not forget about the e4:

e4xsin(2x)dx=e4(12xcos(2x)+14sin(2x))+C