.
#r=costheta#
#r=1-costheta#
Let's set the two functions equal to each other and solve for #theta# to find the points of intersection:
#costheta=1-costheta#
#2costheta=1#
#costheta=1/2#
#theta=arccos(1/2)=pi/3 and -pi/3#
The enclosed areas are between #0 and pi/3# and between #0 and -pi/3#, and the two are symmetrical. We can figure out the area enclosed between #0 and pi/3# and multiply it by two:
#int_0^(pi/3)(cos^2theta-(1-costheta)^2)(d(theta))#
#int_0^(pi/3)(cos^2theta-(1+cos^2theta-2costheta))(d(theta))#
#int_0^(pi/3)(cos^2theta-1-cos^2theta+2costheta)(d(theta))#
#=int_0^(pi/3)(2costheta-1)(d(theta))=2int_0^(pi/3)costheta(d(theta))-int_0^(pi/3)d(theta)#
#=(2sintheta-theta)_0^(pi/3)=2(sqrt3/2)-pi/3-2sin0-0=sqrt3-pi/3-0-0=sqrt3-pi/3#
Now we multiply it by #2# to get the two enclosed areas together:
#=2sqrt3-(2pi)/3#