Question #811ac

1 Answer
Nov 27, 2017

#=2sqrt3-(2pi)/3#

Explanation:

.

enter image source here

#r=costheta#

#r=1-costheta#

Let's set the two functions equal to each other and solve for #theta# to find the points of intersection:

#costheta=1-costheta#

#2costheta=1#

#costheta=1/2#

#theta=arccos(1/2)=pi/3 and -pi/3#

The enclosed areas are between #0 and pi/3# and between #0 and -pi/3#, and the two are symmetrical. We can figure out the area enclosed between #0 and pi/3# and multiply it by two:

#int_0^(pi/3)(cos^2theta-(1-costheta)^2)(d(theta))#

#int_0^(pi/3)(cos^2theta-(1+cos^2theta-2costheta))(d(theta))#

#int_0^(pi/3)(cos^2theta-1-cos^2theta+2costheta)(d(theta))#

#=int_0^(pi/3)(2costheta-1)(d(theta))=2int_0^(pi/3)costheta(d(theta))-int_0^(pi/3)d(theta)#

#=(2sintheta-theta)_0^(pi/3)=2(sqrt3/2)-pi/3-2sin0-0=sqrt3-pi/3-0-0=sqrt3-pi/3#

Now we multiply it by #2# to get the two enclosed areas together:

#=2sqrt3-(2pi)/3#