How do you evaluate (112i+31+i)(3+4i24i)?

1 Answer
Nov 29, 2017

22+i214i

Explanation:

112i+31+i=(1+i)+3(12i)(12i)(1+i) (common denominator)
=1+i+36i1+i2i+2
=45i3i

Now, we take that answer and multiply it by 3+4i24i.

(45i3i)(3+4i24i)=(45i)(3+4i)(3i)(24i)
=12+16i15i20i2612i2i+4i2
=12+16i15i+20612i2i4 (since i2=1)
=22+i214i (by simplifying)