Question #41c4f

2 Answers
Nov 30, 2017

dxe2x1=arctane2x1+C

Explanation:

.

dxe2x1

We will solve this by Trigonometric Substitution:

In the right triangle below:

enter image source here

If c=ex and a=1 we can use the Pythagoras' formula to solve for the length of side b

c2=a2+b2

b2=c2a2

b=c2a2=e2x1

secθ=ca=ex

tanθ=ba=e2x1

secθtanθd(θ)=exdx

dx=secθtanθd(θ)ex=secθtanθd(θ)secθ=tanθd(θ)

We have all the pieces to substitute:

dxe2x1=(1e2x1)(dx)=1tanθtanθd(θ)=d(θ)=θ+C

Now we can substitute back:

From tanθ=e2x1 we have:

θ=arctane2x1

Therefore:

dxe2x1=arctane2x1+C

Nov 30, 2017

dxe2x1=arcsec(ex)+C

Explanation:

dxe2x1

=exdxexe2x1

After using ex=secu and exdx=secutanu substitution, this integral became,

secutanudusecu(secu)21

=tanudu(tanu)2

=tanudutanu

=du

=u+C

After using ex=secu and u=arcsec(ex) inverse transforms, I found

dxe2x1=arcsec(ex)+C