Given a > 0, b > 0, c > 0 calculate the minimum for (a^x+b^x+c^x)/3 ?

2 Answers
Nov 30, 2017

( a b c )^(1/3)

Explanation:

a^x = exp(x * ln(a)) = 1 + x*ln(a) + (x²(ln(a))²)/2 + ...

For small x, we need only the first two terms.
So we have

lim x->0 " "((1+x*ln(a)+1+x*ln(b)+1+x*ln(c))/3)^(1/x)

= lim x->0 " "(1 + (ln(a)+ln(b)+ln(c))*x/3)^(1/x)

= lim x->0 " " (1 + k x)^(1/x) , with k= (ln(a)+ln(b)+ln(c))/3

= exp(k) " " (Euler's limit)

= ( a b c )^(1/3)

Nov 30, 2017

root(3)(abc)

Explanation:

Assuming a > 0, b > 0, c > 0 and x ge 0

(a^x+b^x+c^x)/3 ge root(3)(a^xb^xc^x) = (abc)^(x/3) then

((a^x+b^x+c^x)/3)^(1/x) ge( (abc)^(x/3))^(1/x) = root(3)(abc)

NOTE

((a^x+b^x+c^x)/3)^(1/x) for x in (0, oo) has a minimum at

lim_(x->0)((a^x+b^x+c^x)/3)^(1/x)

because

d/(dx)((a^x+b^x+c^x)/3)^(1/x) gt 0 for x in (0,oo)