How do you evaluate \int \frac { 1} { \csc x - 1} d x?

1 Answer
Dec 2, 2017

sec x + tanx -x +C

Explanation:

Multiplying by csc x +1 in both numerator and denominator we have
1/(csc x -1) = (cscx +1)/((csc x -1)(csc x +1))

= (cscx+1)/(csc^2 x -1)

But we have the trigonometric identity that csc^2x - 1 = cot^2x . Hence

=(csc x +1) / (cot^2x)
= csc x /cot^2x + tan^2x
= sin x / cos^2x +(sec^2x - 1)
= secx tanx + sec^2x -1

Now integrate

\int (dx)/(csc x -1) = \int secx tanx dx + \int sec^2x dx - \int dx

= sec x + tanx -x +C