How do you evaluate \int \frac { 1} { \csc x - 1} d x?
1 Answer
Dec 2, 2017
Explanation:
Multiplying by
= (cscx+1)/(csc^2 x -1)
But we have the trigonometric identity that
=(csc x +1) / (cot^2x)
= csc x /cot^2x + tan^2x
= sin x / cos^2x +(sec^2x - 1)
= secx tanx + sec^2x -1
Now integrate
= sec x + tanx -x +C