Solve equation 4(sin2(2x))+7(sin2x)2=0 For 0<x<360?

1 Answer
Dec 3, 2017

x=17.76,162.24,197.76,and342.24 Degrees

Explanation:

4sin2(2x)+7sin2x2=0

We have a double-angle identity that gives us:

sin(2x)=2sinxcosx then:

sin2(2x)=4sin2xcos2x

Let's plug this in:

16sin2xcos2x+7sin2x2=0

Now, from the identity sin2x+cos2x=1, we can get:

cos2x=1sin2x

Let's plug this in:

16sin2x(1sin2x)+7sin2x2=0

16sin2x16sin4x+7sin2x2=0

16sin4x+23sin2x2=0. Let's multiply the equation by 1:

16sin4x23sin2x+2=0

Let's let z=sin2x. Then z2=sin4x. Let's plug them in:

16z223z+2=0

Let's use the quadratic formula to solve for z:

z=23±5294(16)(2)2(16)=23±40132

z=sin2x=1.3445 and z=sin2x=0.0930

sinx=±1.3445=±1.1595, then x=arcsin(±1.1595)

These two answers are not acceptable because we are looking for angles whose sin values are larger than ±1.

sinx=±0.0930=±0.3050, then x=arcsin(±0.3050)

x=17.76 Degrees, and x=17.76=36017.76=342.24Degrees

Now, because the problem asked for values between 0 and 360 Degrees, we can have two more answers:

x=18017.76=162.24 Degrees, and

x=180+17.76=197.76 Degrees