If #f(x) = (x^2-4)/ (x-1)#, what is #f(0), f(1/2), f(-2), f(x-2), f(r^2) and f(1/t)#?

1 Answer
Dec 3, 2017

#f(0)=4#
#f(1/2)=15/2#
#f(-2) = 0#
#f(x-2)=(x(x-4))/(x-3)#
#f(r^2)=(r^4-4)/(r^2-1)#
#f(1/t)=((1/t^2)-4)/((1/t)-1)#

Explanation:

To find the expressions that replaces the x in f(x), we have to replace the x in the equation with whatever is in the bracket, so if

#f(x) = (x^2-4)/(x-1)#

#f(0) = (0^2-4)/(0-1)= (-4)/(-1)=4#

#f(1/2) = ((1/2)^2-4)/((1/2)-1)=((1/4)-4)/((1/2)-1)=15/2#

#f(-2) = ((-2)^2-4)/((-2)-1)=(0)/-3=0#

#f(x-2) = ((x-2)^2-4)/((x-2)-1)=(x^2-4x+4-4)/(x-3)=(x(x-4))/(x-3)#

#f(r^2) = ((r^2)^2-4)/((r^2)-1)=(r^4-4)/(r^2-1)#

#f(1/t) = ((1/t)^2-4)/((1/t)-1)=((1/t^2)-4)/((1/t)-1)#