If f(x) = (x^2-4)/ (x-1)f(x)=x24x1, what is f(0), f(1/2), f(-2), f(x-2), f(r^2) and f(1/t)f(0),f(12),f(2),f(x2),f(r2)andf(1t)?

1 Answer
Dec 3, 2017

f(0)=4f(0)=4
f(1/2)=15/2f(12)=152
f(-2) = 0f(2)=0
f(x-2)=(x(x-4))/(x-3)f(x2)=x(x4)x3
f(r^2)=(r^4-4)/(r^2-1)f(r2)=r44r21
f(1/t)=((1/t^2)-4)/((1/t)-1)f(1t)=(1t2)4(1t)1

Explanation:

To find the expressions that replaces the x in f(x), we have to replace the x in the equation with whatever is in the bracket, so if

f(x) = (x^2-4)/(x-1)f(x)=x24x1

f(0) = (0^2-4)/(0-1)= (-4)/(-1)=4f(0)=02401=41=4

f(1/2) = ((1/2)^2-4)/((1/2)-1)=((1/4)-4)/((1/2)-1)=15/2f(12)=(12)24(12)1=(14)4(12)1=152

f(-2) = ((-2)^2-4)/((-2)-1)=(0)/-3=0f(2)=(2)24(2)1=03=0

f(x-2) = ((x-2)^2-4)/((x-2)-1)=(x^2-4x+4-4)/(x-3)=(x(x-4))/(x-3)f(x2)=(x2)24(x2)1=x24x+44x3=x(x4)x3

f(r^2) = ((r^2)^2-4)/((r^2)-1)=(r^4-4)/(r^2-1)f(r2)=(r2)24(r2)1=r44r21

f(1/t) = ((1/t)^2-4)/((1/t)-1)=((1/t^2)-4)/((1/t)-1)f(1t)=(1t)24(1t)1=(1t2)4(1t)1