Question #7fce1

2 Answers
Dec 7, 2017

x = pi/4 + 2pik, pi/2 + 2pik, 3pi/4 + 2pik (Period of sin(x) and cos(x) is 2pi)

Explanation:

Assuming sin(2x)sin(x) = cos(x), begin by using the double angle identity, sin(2u) = 2sin(u)cos(u) to rewrite the equation.

sin(2x)sin(x) = cos(x) rarr 2sin(x)sin(x)cos(x) = cos(x) rarr 2sin^2(x)cos(x) = cos(x)

Next subtract cos(x) from the right side to the left to make the equation equal to zero.

2sin^2(x)cos(x)-cos(x) = 0

Factor out cos(x) and separate

cos(x)*(2sin^2(x)-1) = 0 rarr cos(x) = 0 and 2sin^2(x)-1 = 0

Find the exact values using the unit circle or right triangle method, cos(x) = 0 when x = pi/2 and sin(x) = sqrt(2)/2 when x = pi/4, 3pi/4 (Remember restrictions sin(x): R(-pi/2, pi/2); cos(x): R(0, pi)

Dec 7, 2017

Answers:
x = pi/2 + kpi
x = pi/4 + (kpi)/2

Explanation:

sin 2x.sin x - cos x = 0
Replace sin 2x by (2sin x.cos x).
2sin^2 x.cos x - cos x = 0
cos x(2sin^2 x - 1) = 0
Either factor should be zero.
A. cos x = 0. Unit circle give 2 solutions:
x = pi/2, and x = (3pi)/2
General answer: x = pi/2 + kpi
B. 2sin^2 x - 1 = 0 --> sin^2 x = 1/2
sin x = +- sqrt2/2
a. sin x = sqrt2/2. Trig table and unit circle give 2 solutions:
x = pi/4 , and x = pi - pi/4 = (3pi)/4
b. sin x = -sqrt2/2. Unit circle gives -->
x = pi + pi/4 = (5pi)/4 and x = 2pi - pi/4 = (7pi)/4
General answer: x = pi/4 + (kpi)/2