Question #515bb

1 Answer
Dec 8, 2017

About 147F

Explanation:

The differential equation in this model is follows.
(dT)/dt = -K(T-T_(env)), where
T: temparature of the body
T_(env): temparature of the environment
t: time
K: time constant

Now, let's solve this.

[1] Let T'=T-T_(env)
(dT')/dt=-KT'

[2] Separate variables:
(dT')/(T')=-Kdt

[3] Integrate both sides;
ln T'=-Kt+C (C:constant)
T'=e^(-Kt+C)

Therefore, the result is
T=T_(env)+e^(-Kt+C)

Plug in the given value.(T_(env)=76, K=0.03
When t=0, T=172:
172=76+e^C
e^C=96
T=76+96e^-0.03t

When t=10
T=76+96*e^-(0.03*10)=147.1185…

Here are some useful tips:
https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/exponential-models-diff-eq/v/newtons-law-of-cooling