How do you solve e^ { x ^ { 2} } = \frac { e ^ { 15} } { ( e ^ { x } ) ^ { 2} }ex2=e15(ex)2?

1 Answer
Dec 9, 2017

x=3 or x=-5x=3orx=5

Explanation:

  • e^(x^2)=e^15/e^(2x)ex2=e15e2x <=>

<=> lne^(x^2)=ln(e^15/e^(2x))lnex2=ln(e15e2x) <=>

<=> x^2=lne^15-lne^(2x)x2=lne15lne2x <=>

<=> x^2=15lne-2x*lnex2=15lne2xlne <=>

<=> x^2 = 15-2xx2=152x <=>

<=> x^2+2x-15=0x2+2x15=0 <=>

<=> (x-3)(x+5)=0(x3)(x+5)=0 <=>

<=> x=3x=3 or x=-5x=5

  • Used logarithm properties :
    lne=1lne=1
    lne^x=xlnelnex=xlne
    lnx=y <=> x=e^ylnx=yx=ey
    ln(a/b)=lna-lnbln(ab)=lnalnb