Help please?

enter image source here

2 Answers
Dec 12, 2017

Please see below.

Explanation:

.

You switch the #x# and #y# in each function and solve for #y#:

#1.# #y=-x/12#

#x=-y/12#,

#y=-12x#

#2.# #y=(x-12)/4#

#x=(y-12)/4#

#4x=y-12#

#y=4x+12#

#3.# #y=(3x+1)/6#

#x=(3y+1)/6#

#6x=3y+1#

#3y=6x-1#

#y=(6x-1)/3#

Dec 12, 2017

Manipulate the equation so that #x# is isolated on one side, getting:
1. #f^-1(x) = -12x#
2. #f^-1(x) = 4x + 12#
3.#f^-1(x) = 2x - 1/3#

Explanation:

The inverse of a function, say, #f(x)#, is a function #f^-1(x)# such that #f^-1(f(x)) = x#. To obtain the inverse function, manipulate the equation so that #x# is isolated on one side.

Function 1: #f(x) = -(x)/(12)#

We could multiply each side by #-12#:

#-12f(x) = x#

So, it must be that #f^-1(x) = -12x#. Let's test it to be sure:

#f^-1(f(x)) = -12(f(x)) = -12(-(x)/(12)) = x#.

Alright!

Function 2: #f(x) = (x - 12)/4#

Multiply each side by #4#:

#4f(x) = x - 12#

Add each side by #12#:

#4f(x) + 12 = x#

So #f^-1(x) = 4x + 12#.

#f^-1(f(x)) = 4(f(x)) + 12 = 4((x - 12)/4) + 12#
#= x - 12 + 12 = x#.

Function 3: #f(x) = (3x + 1)/6#

Multiply each side by #6#:

#6f(x) = 3x + 1#

Subtract #1# from each side:

#6f(x) - 1 = 3x#

Divide each side by #3#:

#6/3 f(x) - 1/3 = x#

#2f(x) - 1/3 = x#

So #f^-1(x) = 2x - 1/3#.

#f^-1(f(x)) = 2(f(x)) - 1/3 = 2((3x + 1)/6) - 1/3#
#= (3x + 1)/3 - 1/3 = (3x)/3 = x#.