Sin^2x+sin^2x cot^2x ?

2 Answers
Dec 13, 2017

11

Explanation:

sin^2x+sin^2x cot^2xsin2x+sin2xcot2x

= sin^2x*(1+cos^2x/sin^2x)=sin2x(1+cos2xsin2x)

= sin^2x*((sin^2x+cos^2x)/sin^2x)=sin2x(sin2x+cos2xsin2x)

= sin^2x*(1/sin^2x)=sin2x(1sin2x)

= sin^2x/sin^2x=sin2xsin2x

= 1=1

Dec 13, 2017

See the answer below....

Explanation:

sin^2x+sin^2x cdot cot^2xsin2x+sin2xcot2x
=sin^2x+sin^2x cdot cos^2x/sin^2x=sin2x+sin2xcos2xsin2x
=sin^2x+cancel(sin^2x) cdot cos^2x/cancel(sin^2x)
=sin^2x+cos^2x
=1 [As identity]