How do you solve this system of equations: #-3x - 3y = 0 and - 3x - 10y = 14#?

3 Answers
Dec 14, 2017

#x=2# and #y=-2#

Explanation:

As #-3x-3y=0#, #-3x=3y#

Putting this in #-3x-10y=14# we get

#3y-10y=14#

or #-7y=14#

or #y=14/(-7)=-2#

and #-3x=3×(-2)#

or #-3x=-6#

or #x=(-6)/(-3)=2#

Hence #x=2# and #y=-2#

Dec 14, 2017

x = 2 and y = -2

Explanation:

Given:

#-3x - 3y = 0 and -3x - 10y = 14#

Let #-3x = 3y #
Now, we substitute for #-3x# in #-3x - 10y = 14#, that is;

#3y - 10y = 14#
#-7y = 14#
#color(red)(y = -2)#

Next, substitute the value of y in any one of the above equations to get the respective x value;

# -3x - 10(-2) = 14#
#-3x + 20 = 14#
#-3x = -6#
#color(red)(x = 2) #

Therefore, #x = 2# and #y = -2.#

Dec 14, 2017

#x=2 and y=-2#

Explanation:

Note that the terms in #x# are the same in each equation.

Isolate the #x# term, make it the subject in each equation.

#-3x = 3y" "and" " -3x = 10y+14#

We know that #-3x =-3x#, so equating the right sides gives:

#10y +14 = 3y" "larr# now solve for #y#

#10y -3y = -14#

#7y = -14#

#y =-2#

Use the value of #y# to find #x#

#-3x = 3(-2)#

#-3x = -6#

#x =2#

Check in the second equation.

#-3x = 10y+14#

#-3(2)" "and" "10(-2)+14#

#-6" " and " "-20+14#

#-6=-6#