Question #03feb

1 Answer
Dec 15, 2017

=3.1323u2

Explanation:

in polar coordinates the area is calculated

A=12bar2d(θ)

take the funtion

r=ln(θ)

the area

A=122π1(ln(θ))d(θ)

integrate by parts

udv=uvvdu

where

u=ln(θ) du=1θd(θ)
dv=d(θ) v=θ

=ln(θ)(θ)2π12π1(θ)(1θ)d(θ)2

=ln(θ)(θ)2π12π1d(θ)2=(ln(θ)(θ)(θ))2π12

=((2π)ln(2π)1ln(1))((2π)(1))2

=((2π)ln(2π)1ln(1))((2π)(1))=12π+2πln(2π)2=6.2645u22

=3.1323u2