Question #b5fef

2 Answers
Dec 18, 2017

#f'(x)=sqrt3#

Explanation:

.

#f(x)=sin^2(2x)#

Let #u=2x#

#du=2dx#

#f(x)=sin^2u#

Let #z=sinu#

#dz=cosudu#

#f(x)=z^2#

#f'(x)=2z#

Now, we substitute back for #z#:

#f'(x)=2sinucosu#

Now, we substitute back for #u#:

#f'(x)=2sin(2x)cos(2x)(2)#

#f'(x)=4sin2xcos2x#

#f'(pi/6)=4sin((2pi)/6)cos((2pi)/6)=4sin(pi/3)cos(pi/3)=4sqrt3/2(1/2)#

#f'(x)=sqrt3#

Dec 18, 2017

See below.

Explanation:

Find derivative of #f(x)=sin^2(2x)#

Using chain rule:

#d/dx(sin^2(2x))=2(sin(2x))*2cos(2x)=4sin(2x)cos(2x)#

#:.#

#f'(pi/6)=4sin(pi/3)cos(pi/3)=4(sqrt(3)/2)(1/2)=sqrt(3)#