Question about projecting limits for an even and odd theoretical function?

If f is a continuous function such that its limit as x approaches positive infinity is 5. Discuss the following limit: limit of f as x approaches negative infinity; for each condition below. If the limit exists find it. If not possible explain.

a) The graph of f is symmetric to the y-axis.

b) The graph of f is symmetric to the origin.

1 Answer
Dec 30, 2017

Check below.

Explanation:

  • #lim_(xrarr+oo)f(x)=5# , #(A)#

#lim_(xrarr-oo)f(x)=# ?

#color(blue)(a))#

#f# symmetric to y axis #-># #f# even , for #x##in##RR# , #-x##in##RR# : #f(-x)=f(x)#

Example of even function #f(x)=x^2+1# graph{x^2+1 [-10, 10, -5, 5]}

  • We set #x=-y#
    #x->-oo#
    #y->+oo#

#lim_(xrarr-oo)f(x)=# #lim_(yrarr+oo)f(-y)# #=# #lim_(yrarr+oo)f(y)# #=^((A))# #5#

#color(red)b)#

#f# symmetric to the origin #-># #f# odd , for #x##in##RR# , #-x##in##RR# : #f(-x)=-f(x)#

Example of an odd function #f(x)=x^3#
graph{x^3 [-10, 10, -5, 5]}

  • We set #x=-y#
    #x->-oo#
    #y->+oo#

#lim_(xrarr-oo)f(x)=# #lim_(yrarr+oo)f(-y)# #=# #-lim_(yrarr+oo)f(y)# #=^((A))# #-5#