If f(x) =x-xe^(2x+4) f(x)=xxe2x+4 and g(x) = cos9x g(x)=cos9x, what is f'(g(x)) ?

1 Answer
Jan 2, 2018

9sin9x(2cos9xe^(2cos9x+4)+e^(2cos9x+4)-1)

Explanation:

Since color(red)g(x)=color(red)(cos9x),

then

f(color(red)g(x))=f(color(red)(cos9x))=color(red)(cos9x)-color(red)(cos9x)*e^(2color(red)(cos9x)+4)

Let's differentiate it as a chained function and get:

f'(g(x))=-sin9x*9-(-sin9x*9*e^(2cos9x+4)+cos9x*e^(2cos9x+4)* 2* (-sin9x*9))

=-9sin9x+9sin9xe^(2cos9x+4)+18sin9xcos9xe^(2cos9x+4)

=9sin9x(2cos9xe^(2cos9x+4)+e^(2cos9x+4)-1)