Would you help me find the limit?

#Lim_(xrarr2)(x^2-4)/x^2*tan((pix)/4)#

2 Answers
Jan 2, 2018

#lim_(x->2)((x^2-4)/x^2)*tan((pix)/4)=-4/pi#

Explanation:

Begin by simplifying #lim_(x->2)((x^2-4)/x^2)# by multiply the numerator and denominator by #1/x^2#

#((x^2-4)/x^2)*(1/x^2)/(1/x^2)=((x^2/x^2-4/x^2))/(x^2/x^2)=(1-(4/x^2))/1=1-4/x^2#

So our limit is now:

#lim_(x->2)((1-4/x^2)tan((pix)/4))#

If we were to use direct subsitution above we will find that the limit is an indeterminate form: #color(red)(0*oo#

Given that, we can apply L'Hospital's Rule but we first must accomdate for L'hosptal by rewriting the limit such that the indeterminate form is #0/0# or #oo/oo#.

We can rewrite #lim_(x->2)((1-4/x^2)tan((pix)/4))# as

#lim_(x->2)((1-4/x^2)/(1/tan((pix)/4)))# by which direct substitution yields the indeterminate form: #color(red)(0/0#

Now we apply L'hospital:

#=lim_(x->2)(8/x^3)/((-pisec^2((pix)/4))/(4tan^2((pix)/4))#

Simplifying:

#lim_(x->2)=8/x^3*(4tan^2((pix)/4))/(-pisec^2((pix)/4))->lim_(x->2)(32tan^2((pix)/4))/(-x^3pisec^2((pix)/4)#

#->-32/(pi)lim_(x->2)(cos((pix)/4)tan^2((pix)/4))/(x^3)#

#=-32/pi*1/8=-4/pi#

Jan 2, 2018

Please see below.

Explanation:

Note that
#cos((pix)/4) = cos(pi/4(x-2+2))#

# = cos((pi/4(x-2))+pi/2)#

# = cos(pi/4(x-2))cos(pi/2)-sin(pi/4(x-2))sin(pi/2)#

# = -sin(pi/4(x-2))#

So,

#(x^2-4)/x^2 * tan((pix)/4) = ((x+2)sin((pix)/4))/x^2 * (x-2)/(cos((pix)/4))#

# = ((x+2)sin((pix)/4))/x^2 * (x-2)/(-sin(pi/4(x-2))#

# = ((x+2)sin((pix)/4))/x^2 * (pi/4(x-2))/(sin(pi/4(x-2))) * (-4/pi)#

Evaluate the limit as #xrarr2# usung #u = pi/4(x-2)# to get:

# ((2+2)sin(pi/2))/2^2 * lim_(urarr0) u/sinu * -4/pi = -4/pi#