Question #e8e24

1 Answer
Jan 3, 2018

#d/dxf(x)=(-3)/(2x^(3/2))+1/sqrtx#

Explanation:

#f(x)=(3+2x)/(sqrtx)#

This can also be written as #->#

#f(x)=3/sqrtx+(2x)/sqrtx#

#f(x)=3/sqrtx+(2*sqrtx*sqrtx)/sqrtx#

#f(x)=3/sqrtx+(2cancel(sqrtx)sqrtx)/cancel(sqrtx)#

#f(x)=3/sqrtx+2sqrtx#

Now you can differentiate both sides with respect to #x#

The power rule is #d/dxx^n=nx^(n-1)#

#d/dxf(x)=d/dx3/sqrtx+d/dx2sqrtx#

#d/dxf(x)=(-3)/(2x^(3/2))+1/sqrtx#