Question #e8e24

1 Answer
Jan 3, 2018

d/dxf(x)=(-3)/(2x^(3/2))+1/sqrtxddxf(x)=32x32+1x

Explanation:

f(x)=(3+2x)/(sqrtx)f(x)=3+2xx

This can also be written as ->

f(x)=3/sqrtx+(2x)/sqrtxf(x)=3x+2xx

f(x)=3/sqrtx+(2*sqrtx*sqrtx)/sqrtxf(x)=3x+2xxx

f(x)=3/sqrtx+(2cancel(sqrtx)sqrtx)/cancel(sqrtx)

f(x)=3/sqrtx+2sqrtx

Now you can differentiate both sides with respect to x

The power rule is d/dxx^n=nx^(n-1)

d/dxf(x)=d/dx3/sqrtx+d/dx2sqrtx

d/dxf(x)=(-3)/(2x^(3/2))+1/sqrtx