Can anybody do this?

enter image source here

2 Answers
Jan 4, 2018

0

Explanation:

ln(ln(x))/x=ln(ln(x))*1/x

lim_(x->a)(f(x)*g(x))=lim_(x->a)(f(x))*lim_(x->a)(g(x))

lim_(x->oo)(ln(ln(x))=oo

lim_(x->oo)(1/x)=0

lim_(x->oo)(ln(lnx))*lim_(x->oo)(1/x)=oo*0=0

Jan 4, 2018

lim_(x->oo)ln(ln(x))/x=0

Explanation:

lim_(x->oo)ln(ln(x))/x

This limit is in the indeterminate form oo/oo, so we can use l'Hôpital's rule, which states that, if lim_(x->c)f(x)/g(x) is of the form oo/oo or 0/0, then it is equal to lim_(x->c)(f'(x))/(g'(x)).

So, since d/dx(ln(ln(x)))=1/(xln(x)) and d/dx(x)=1, we have the original limit equal to
lim_(x->oo)1/(xln(x))

Evaluating this demonstrates that
lim_(x->oo)ln(ln(x))/x=0

This can be verified by a graph:
graph{e^(xy)-ln(x)=0}