Can anybody do this?

enter image source here

2 Answers
Jan 4, 2018

#0#

Explanation:

#ln(ln(x))/x=ln(ln(x))*1/x#

#lim_(x->a)(f(x)*g(x))=lim_(x->a)(f(x))*lim_(x->a)(g(x))#

#lim_(x->oo)(ln(ln(x))=oo#

#lim_(x->oo)(1/x)=0#

#lim_(x->oo)(ln(lnx))*lim_(x->oo)(1/x)=oo*0=0#

Jan 4, 2018

#lim_(x->oo)ln(ln(x))/x=0#

Explanation:

#lim_(x->oo)ln(ln(x))/x#

This limit is in the indeterminate form #oo/oo#, so we can use l'Hôpital's rule, which states that, if #lim_(x->c)f(x)/g(x)# is of the form #oo/oo# or #0/0#, then it is equal to #lim_(x->c)(f'(x))/(g'(x))#.

So, since #d/dx(ln(ln(x)))=1/(xln(x))# and #d/dx(x)=1#, we have the original limit equal to
#lim_(x->oo)1/(xln(x))#

Evaluating this demonstrates that
#lim_(x->oo)ln(ln(x))/x=0#

This can be verified by a graph:
graph{e^(xy)-ln(x)=0}