How do you solve 2^3x = 3e^x ? Thanks

2 Answers
Jan 4, 2018

#~=1.02#

Explanation:

#2^(3x)=3e^x#

#ln2^(3x)=ln(3e^x)#

#3xln2=ln3+lne^x#

#3x*0.69314718056=1.09861228867+x#

#2.07944154168x-x=1.09861228867#

#1.07944154168x=1.09861228867#

#x=1.09861228867/1.07944154168#

#1.01775987513# #~=1.02#

NOTES: #lnx# is "#1-1#" so you can plug it in the equation.

  • #ln(ab)=lna+lnb#
  • #lna^x=xlna#
  • #lne=1#
Jan 4, 2018

#x=1.018#

Explanation:

#2^(3x) = 3e^x#

#ln2^(3x) = color(red)(ln(3e^x)#

#x*ln2^(3) -color(red)(x*ln(3e))=0#

#x(ln2^(3) -ln(3e))=0#

#x=0/(ln2^(3) -ln(3e))=0#

Watch out for that step highlighted by red color. It's common mistake. correct version:

#ln2^(3x) = ln(3e^x)#

#ln2^(3x) = lne^x+ln3#

#x*ln2^(3)- x*lne=ln3#

#x(ln2^(3)-lne)=ln3#

#x=ln3/(ln2^(3)-lne)=1.018#