Question #9c615

2 Answers
Jan 4, 2018

cos((11pi)/12) = -sqrt(2+sqrt3)/2cos(11π12)=2+32

Explanation:

The identity for the half angle of the cosine is:

cos(x/2) = +-sqrt((1+cos(x))/2cos(x2)=±1+cos(x)2

We are about to substitute x/2 = (11pi)/12x2=11π12 but, before we do that, we must observe that (11pi)/1211π12 is in the second quadrant. The cosine function is negative in the second quadrant, therefore, we must use the negative value:

cos(x/2) = -sqrt((1+cos(x))/2cos(x2)=1+cos(x)2

Substitute x/2 = (11pi)/12x2=11π12 and x = (11pi)/6x=11π6 into the identity:

cos((11pi)/12) = -sqrt((1+cos((11pi)/6))/2cos(11π12)= 1+cos(11π6)2

Substitute cos((11pi)/6)= sqrt3/2cos(11π6)=32:

cos((11pi)/12) = -sqrt(((1+sqrt3/2))/2)cos(11π12)= (1+32)2

cos((11pi)/12) = -sqrt((((2+sqrt3)/2))/2)cos(11π12)= (2+32)2

cos((11pi)/12) = -sqrt((2+sqrt3)/4)cos(11π12)=2+34

cos((11pi)/12) = -sqrt(2+sqrt3)/2cos(11π12)=2+32

Jan 4, 2018

cos((11pi)/12)=-(sqrt(2+sqrt3))/2cos(11π12)=2+32

Explanation:

.

cos^2x=(1+cos2x)/2cos2x=1+cos2x2

cos^2((11pi)/12)=(1+cos((11pi)/6))/2=(1+(sqrt3)/2)/2=((2+sqrt3)/2)/2=(2+sqrt3)/4cos2(11π12)=1+cos(11π6)2=1+322=2+322=2+34

cos((11pi)/12)=-(sqrt(2+sqrt3))/2cos(11π12)=2+32