Question #39a5a

1 Answer
Jan 12, 2018

To prove #tan^2x-sin^2x=tan^2xsin^2x#

#tan^2x-sin^2x#
#=(sin^2x)/(cos^2x)-sin^2x# [Put tangent in terms of sine and cosine]
#=(sin^2x-sin^2xcos^2x)/cos^2x# [Common denominator]
#=(sin^2x(1-cos^2x))/cos^2x# [Factorise out the #sin^2x#]
#=(sin^2x*sin^2x)/(cos^2x)# [Since #sin^2x+cos^2x=1#, #1-cos^2x=sin^2x#]
#=tan^2xsin^2x# [Since #sin^2x/(cos^2)=tan^2x#]