To prove tan2x−sin2x=tan2xsin2x
tan2x−sin2x
=sin2xcos2x−sin2x [Put tangent in terms of sine and cosine]
=sin2x−sin2xcos2xcos2x [Common denominator]
=sin2x(1−cos2x)cos2x [Factorise out the sin2x]
=sin2x⋅sin2xcos2x [Since sin2x+cos2x=1, 1−cos2x=sin2x]
=tan2xsin2x [Since sin2xcos2=tan2x]