Find the cube root of complex number ? Z=-√2 + i√2

3 Answers
Jan 17, 2018

multiply and divide LHS by -2
we get
z = -2( 1/2^(1/2) - i1/2^(1/2)) = -2*e^(i-pi/4) = |z|*e^(i-pi/4)
therefore
z^(1/3) = (|z|*e^(i-pi/4))^(1/3)
=-2^(1/3)*e^(i-pi/12)
=-2^(1/3)(cos(-pi/12) + isin(-pi/12))
hence cube root of z is
-2^(1/3)(cos(-pi/12) + isin(-pi/12))
hope u find it helpful :)

Jan 17, 2018

root(3)(z) = 2^(-1/6)+2^(-1/6)i

Explanation:

Given:

z = -sqrt(2)+i sqrt(2)

color(white)(z) = 2(cos((3pi)/4)+ i sin((3pi)/4))

The principal cube root of z is:

z^(1/3) = 2^(1/3)(cos(pi/4)+i sin(pi/4))

color(white)(z^(1/3)) = 2^(1/3)(sqrt(2)/2+i sqrt(2)/2)

color(white)(z^(1/3)) = 2^(-1/6)+2^(-1/6) i

Jan 18, 2018

The solutions are S={2^(1/6)(1+i), 2^(1/3)(-(sqrt2+sqrt6)/4+i(sqrt6-sqrt2)/4), 2^(1/3)(-(sqrt2+sqrt6)/4-i(sqrt6+sqrt2)/4)}

Explanation:

Re write z in the exponential form

z=-sqrt2+isqrt2=sqrt2(-1+i)

=2(-1/sqrt2+1/sqrt2i)

=-2(cos(3/4pi)+isin(3/4pi))

=2e^(3/4pi+2kpi), k in ZZ

Therefore,

z^(1/3)=2^(1/3)e^(i(1/4pi+2/3kpi)

When k=0

z_0=2^(1/3)e^(i1/4pi)=2^(1/3)(cos(pi/4)+isin(pi/4))

=2^(1/6)(1+i)

When k=1

z_1=2^(1/3)e^(i11/12pi)=2^(1/3)(cos(11/12pi)+isin(11/12pi))

=2^(1/3)(-(sqrt2+sqrt6)/4+i(sqrt6-sqrt2)/4)

When k=2

z_2=2^(1/3)e^(i19/12pi)=2^(1/3)(cos(19/12pi)+isin(19/12pi))

=2^(1/3)(-(sqrt2+sqrt6)/4-i(sqrt6+sqrt2)/4)