lim_(xrarr0^+)sinx^x=?
sinx^x=e^(ln(sinx)^x)=e^(xln(sinx))
= lim_(xrarr0^+)e^(xln(sinx)) (1)
You see that we still have problem and can't calculate the limit at it's current form as ln0 is not defined.
Let's study this limit seperately
lim_(xrarr0^+)ln(sinx)=
Set
sinx=u
x->0^+
u->0^+
= lim_(urarr0^+)lnu=-oo
graph{lnx [-10, 10, -5, 5]}
lim_(xrarr0^+)xln(sinx)=lim_(xrarr0^+)ln(sinx)/(1/x)=_(DLH)^(((-oo)/(+oo)))
lim_(xrarr0^+)(((sinx)')/sinx)/(-1/x^2)=-lim_(xrarr0^+)(cosx/sinx)/(1/x^2)=-lim_(xrarr0^+)((x^2cosx)/sinx)
x->0^+
x>0
= -lim_(xrarr0^+)(cosx)/(sinx/x*1/x)=^((1/(1*(+oo))) 0
lim_(xrarr0^+)cosx=cos0=1
lim_(xrarr0^+)sinx/x=1
lim_(xrarr0^+)(1/x)=^((1/(0^+)) +oo
Now if in (1) i set:
y=xln(sinx)
x->0^+
y->0
and (1) now becomes:
lim_(yrarr0)e^y=e^0=1
As a result,
lim_(xrarr0^+)sinx^x=1