How do you find lim_(x->0^+)(sinx)^x?

How do you find lim_(x->0^+)(sinx)^x?

1 Answer
Jan 18, 2018

lim_(xrarr0^+)sinx^x=1

Explanation:

lim_(xrarr0^+)sinx^x=?

sinx^x=e^(ln(sinx)^x)=e^(xln(sinx))

= lim_(xrarr0^+)e^(xln(sinx)) (1)

You see that we still have problem and can't calculate the limit at it's current form as ln0 is not defined.
Let's study this limit seperately

lim_(xrarr0^+)ln(sinx)=

Set

sinx=u
x->0^+
u->0^+

= lim_(urarr0^+)lnu=-oo

graph{lnx [-10, 10, -5, 5]}

lim_(xrarr0^+)xln(sinx)=lim_(xrarr0^+)ln(sinx)/(1/x)=_(DLH)^(((-oo)/(+oo)))

lim_(xrarr0^+)(((sinx)')/sinx)/(-1/x^2)=-lim_(xrarr0^+)(cosx/sinx)/(1/x^2)=-lim_(xrarr0^+)((x^2cosx)/sinx)

x->0^+

x>0

= -lim_(xrarr0^+)(cosx)/(sinx/x*1/x)=^((1/(1*(+oo))) 0

  • because

lim_(xrarr0^+)cosx=cos0=1

lim_(xrarr0^+)sinx/x=1

lim_(xrarr0^+)(1/x)=^((1/(0^+)) +oo

Now if in (1) i set:

y=xln(sinx)

x->0^+
y->0

and (1) now becomes:

lim_(yrarr0)e^y=e^0=1

As a result,

lim_(xrarr0^+)sinx^x=1