#f(x)=ln(x/(x^2+1))#
For #f# to be defined in #RR# we need #x/(x^2+1)>0#
#x^2+1# is always #>0# so we need #x>0#
As a result Domain is #D_f=(0,+oo)#
For #x##in##D_f#:
#f'(x)=1/(x/(x^2+1))*(x/(x^2+1))'=((x^2+1)/x)(x/(x^2+1))'# #=#
#((x^2+1)/x)(((x)'(x^2+1)-x(x^2+1)')/(x^2+1)^2)# #=#
#((x^2+1)/x)((x^2+1-2x^2)/(x^2+1)^2)# #=#
#((x^2+1)/x)((-x^2+1)/(x^2+1)^2)# #=#
#-(cancel(x^2+1)/x)((x^2-1)/(x^2+1)^cancel(2))# #=#
#-(x^2-1)/(x(x^2+1))# #=# #-(x^2-1)/(x^3+x)#