How do you calculate #int\ ln(x)^ln(x)(1/x+ln(ln(x))/x)\ dx# ?

1 Answer
Jan 23, 2018

#int\ ln(x)^ln(x)(1/x+ln(ln(x))/x)\ dx=ln(x)^ln(x)+C#

Explanation:

#\ \ \ \ \ \ int\ ln(x)^ln(x)(1/x+ln(ln(x))/x)\ dx#

Let's first substitute #u=ln(x)# and #du=dx/x#:
#=int\ u^u(1+ln(u))\ du#
#=int\ e^(u ln(u))(1+ln(u))\ du#

Substitute again with #v=u ln(u)# and #dv=(1+ln(u))\ du#:
#=int\ e^v\ dv#
#=e^v+C#

Substitute back #v=u ln(u)#:
#=e^(u ln(u))+C#
#=u^u+C#

Substitute back #u=ln(x)#:
#=ln(x)^ln(x)+C#