Assuming that #a_n# exists when #n->oo#, then #lim_(n->oo)a_(n+1)=lim_(n->oo)sqrt(2+a_n)# #lim_(n->oo)a_n=lim_(n->oo)sqrt(2+a_n)# #lim_(n->oo)a_n^2=lim_(n->oo)2+a_n# #lim_(n->oo)a_n^2-a_n-2=0# #lim_(n->oo)a_n=(1±sqrt(1^2+4*2))/2=(1±3)/2#
However, #a_n>0# for all #n#. Thus, #lim_(n->oo)a_n=2#